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Accurate quantum and statistical mechanics from system-specific operator expansions
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An effective and flexible numerical scheme is proposed to calculate the quantum and statistical mechanics of
multidimensional systems in a simple economic way. The basic idea is to split the Hamiltonian operator into
a reference separable part, whose solution can be obtained by a combination of analytic and numerical tech-
nigues, and a term containing nonseparable interactions and then to employ a symmetric decomposition of the
time evolution operator, which is exact up to a high order in the time step. The method is applicable to a wide
range of coupling potentials and requires numerical effort that scales only linearly with the number of degrees
of freedom involved. To verify the utility of the present approach, two model systems with strongly anhar-
monic mode coupling are considered. The applications show that the method accurately describes the dynamics
for fairly long times with moderate coupling strengths and is still much less arduous than a general numerically
exact calculation[S1063-651X98)03509-(

PACS numbeps): 05.40+j, 02.50.Ey

I. INTRODUCTION used. The higher the accuracy, the smaller the nurbef
time stepsand therefore Monte Carlo integration variables
The calculation of quantum and statistical properties ofrequired to get convergent results for a given time increment

multidimensional systems is one of the central goals of modt. Unfortunately, most conventional propagators remain cor-
ern theoretical physics. Since exact solutions to the Schraect only for short time steps=t/N<1. This limits consid-
dinger and Fokker-Planck equations are available only for @rably the time scale of many-body path integral calcula-
few simple cases, various analytical methods and numericaions, reducing it to two or so periods of motion of quantum
schemes have been explored to solve these equations gparticles in dissipative environmenf43]. Another related
proximately. Both approaches have their own advantagelmitation is the necessity of doing the computations pre-
and limitations. Analytical solutions are essential to the con<isely, even if high precision is unwanted. This is because
ceptual understanding of the behavior of a system, providethe error made by using standard short time propagators rap-
the specific assumptions on which they rely are satigfiéd idly grows with increasingr, and beyond some,,.«, which
Numerical methods are also indispensable since they givis usually smaller than unity, the propagators fail to provide
detailed solutions. Their utility, however, is strongly limited correct resultg10].
by the storage requirements and execution time. Efficient An important exception involves problems where an arbi-
schemes for basis set calculatidi®s-4] and iterative time- trary one-dimensional system is linearly coupled to a har-
propagation method$§5—-8] have proved to be extremely monic bath. Makri and co-worker§l13,14] suggested a
valuable for systems with one or two coordinates, but theymethod to deal very efficiently with such situations. The
are not practical for systems with more than three degrees atarting point is an improved quasiadiabatic propagator ob-
freedom. The use of a short time propagd®0] in con-  tained numerically in terms of the Trotter product formula
junction with Monte Carlo integratiofil1,12 is, at least in and a basis set method. The approach is particularly attrac-
principle, the optimal approach. The most appealing featuréive for two reasons. First, in many practical applications the
of this approach is perhaps that it avoids storing large-quasiadiabatic propagator turns out to be correct for times
dimensional Hamiltonian matrices and wave function vec-sufficiently long to observe interesting physical effects. In
tors. Instead, all dynamicaind/or finite temperatuyehar-  such cases it can be used for thetire time incrementt.
acteristics are included in a discrete path integralSecond, the harmonic bath appears in the path integral ex-
representation of the propagator. In this way, the methogression as a Gaussian integral and therefore can be inte-
allows treating truly multidimensional systems, though thegrated outanalytically, giving rise to a nonlocal influence
practical applicability of numerical methods for evaluation of functional and reducing the problem to a path integral for the
the discrete path integral depends critically on its dimensionsystem coordinate only. In this way the dynamics of system-
The latter in turn is determined by the dimensionality of thebath Hamiltonians can be calculated very accurately with
system, as well as the accuracy of the short time propagat@ny number of degrees of freedom for ambitrarily long

time increment. More recently the approach was extended

to a system coupledonlinearlyto a bath of(harmonic or
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be expressed in system-bath form. In Sec. Il we show how tdhe main disadvantage of the above breakup is that it ne-
construct an improved propagator. The basic idea is to spliglects the commutator of andV, being exact only in the

the Hamiltonian operator into one of separable motion and éimit of free-particle motionV(x) =const. This neglect is of-
potential term that mixes the degrees of freedom and then ten quite severe and introduces a large error that has to be
employ a symmetric decomposition of the evolution opera-compensated for by a very small time incremenWe will

tor, which is exact up to a high order in the time step. In Secrefer to Eqs(2.5 and(2.6) as the standard Trotter splitting.

[l some calculations that illustrate the idea are presented. Two general approaches to refine the Trotter splitting are
The calculations clearly demonstrate that the method leads feossible. First, one can employ an improved zeroth-order
a reasonable description of the dynamics alreadyNerl. representation of the propagator that is accurate for a particu-
Finally, in Sec. IV we give our conclusions and indicate lar problem, but much better behaved than the standard free-

directions of future research. particle basise™'T. It may be noted here that the idea of
using a good representation as the zeroth-order description of
1I. CONSTRUCTION OF IMPROVED PROPAGATORS a problem is not new. Itis Wid6|y used in perturbation theory

. o _ [1] and grid and basis set calculatiof&4,7] when the full
In the study of dynamical and statistical properties ofHamiltonian can be split into a referentgystem part H,
quantum systems much information can be found from afyhose exact solution is easily obtainable by standard tech-

investigation of dthe prodpa?ato(x|e‘*’H|(>j<°), v(\j/here X niques, and a correctionH reading
=(Xq, ... X,) andH stands for a time-independent Carte-
(X o) P H=Hg+\H,, 2.7

sian Hamiltonian operator of the generic fofthe summa-

tion rule over repeated indices is always implied where \ is a smallness parameter. When inserted into the

H=—1D;d? +V(X). (2.1  Trotter product formula, the splittin¢2.7) yields a second-
order system-specific propagator

In the above,D;; is a diagonal matrix withD;; =A2/m; .
Moreover, the parameter entering the evolution operator

7£H . . . . . .y _
e is either imaginary £=it/A) or positive £=2) de- L . .
pending on whether quantum mechanics or statistics is cof?Nich in the coordinate representation has the form
cerned. Due to the formal similarities of the Sodirger 0 o 1) NHl 2
equation and the Fokker-Planck equation, we are also con- ZAta ):J dxdx’(x|e” " x%)
sidering the stochastic dynami¢g|e'"|x°) governed by

e~ tHstAHo = g=MH2g—tHsg~MH2 1 O(\13), (2.9)

X<X2|e7tHs|X1><Xl|ef)\tHc/2|XO>_ (2_9)
L=3dDii{di+[5U(X)]}. 2.2 _ _ - .
It is clear that Eq(2.9) is more difficult to implement than
This is because the Fokker-Planck operd®®) can always the standard Trotter splitting. The best zeroth-order propaga-

be cast into the Hermitian forit2.1), with the potentialV/(x) tors cannot be expressed in closed form in general and must
given by therefore be computedumericallyand stored on grids. By

1 2 5.2 construction, however, they incorporate the exact dynamics

V(x)=5Diitll iU ()"~ 2d;U(x)}. 23 of physically motivated reference systems. Therefore, one

rinay expect that in a certain favorable regime of parameter
. - . . pace k=<1 in the above exampleystem-specific propaga-

erality, e=t. Then the matrix element of the quantum time < would allow much larger time increments than EX6).

evolution operator(ng;'tH’ﬁ|x°), as yvell as that of the Recently, Makri and co-workefd3-15 have implemented
Boltzmann operatoe ; can be pbtamed from the present this idea to system-bath Hamiltonians with impressive suc-
:ir\?;;ment by the substitutions—it/4 and t— 8, respec- cess(see also Refd10,16]).

The most common procedure of approximating the propag
gator is based on the partitioning of the Hamiltonian operato
into kinetic and potential energy terms

Yet another way to obtain bettemalytical approxima-
ions for the propagator consists in using higher-order expan-
Sions for the time evolution operator. We mention specifi-
cally high-accuracy Trotter-like factorizatiofd7], power

H=T+V, series representatiofi$8,19, extrapolation methods for re-

o 5 _ (2.4) moving time slice error$20,21], and cumulant expansions
T=-3Diidi, V=V(X) [22]. An extensive study of their relative efficacy can be
. . ._found in a previous papdd0]. Here we only note that ap-
and emplloys the Trotter breakup to split the time eVOI”t'O”proximate propagators obtained with these methods though
operator into a product of exactly solvable parts more accurate than the standard Trotter splitting are in gen-
eral correct for short time steps. An exception is the work by
Drozdov [19], who elaborated a theory that combines the

This leads to a second-order free-particle coordinate reprex acceleration technique, as well as the power series ex-
- P P pansion method by Makri and Millef18]. The approach
sentation for the propagator of the form

distinguishes itself from other methods in that it gives global
WP(x,t|x%) =[(2t)"det D]~ Y2exp{ — (2tD;;) ~L(x;— x0)2 approximations valid not only for short times, but also in the
intermediate and long time domains. However, the efficient

—3tIV(X)+V(x9)1}. (2.9 evaluation of the power series representation of the propaga-

e—t(T+ V) e—tVIZe—tTe—tV/2+ O(t3) . (25)
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tor is feasible only when the potenti(x) is simple enough and a potential termH =X\F(x), which mixes the degrees
so that the various integrals involved in the expansion coefof freedom. Here\ is the coupling constant. This splitting
ficients can be evaluated analytically. Otherwise, numericaleads to an improved fourth-order approximation of the form
qguadratures are required, making this approach unsuited
even for one-dimensional problems. ss, o 1 CHHY21 AN S o] —tH21 0

Instead, we propose anpalternative numerical method that Yatxtix )_J dx*(x|e X xt e )
combines the spirit of the two kinds of aforementioned ap-
proaches so that the resulting propagator includes the com- X exp{ — s M[F () +4F () + F(X)]
mutator of T andV explicitly but is easy to implement re- —42\23D,[aF(xY) ]2, (2.13
gardless of whether or not the Hamiltonian is of the system-
bath form. The basic idea is to employ an improved zerothwhere the zeroth-order propagatate™tHs|y) is in principle
order representation along with a fourth-order symmetriqo be evaluated numerically. This is computationally feasible

decomposition of the time evolution operator designed folhecause the reference Hamiltonidgis assumed to be sepa-
solving many-body problems of classical mechari2z8]. rgple

When applied to Eq(2.7), the decomposition reads N
gl(Hs TN He) = gMH/BGtHS 26t CatHs/2gMHA6 | () 2¢5) (X e—tHs|y> — H (xi e tHi ly;) (2.14)
=1

(2.10
C:%)\HC+%)\2t2[HC![HS!HC]]! . . . .

and therefore standard one-dimensional grid or basis set
whereH, andH, are two arbitrary noncommuting operators methods can be used to calculate each factor on the right-
assumed to be bounded on a finite-dimensional Hilberhand side of Eq.(2.14). Unlike the Trotter-approximated
space. It may be noted that factorizations of this kind havepropagator given by E@2.8), which is correct up t®(At3),
already been used by the authors to construct high-accurad¢e above approximation is valid up ©(\%t%. The cou-
path integral representations for Fokker-Planck processeding is present in Eg(2.13 not only through the coupling
with singular diffusion matrice$24]. In such a case, the potential NF but also through the commutator
Fokker-Planck operator cannot in principle be cast into a\[F,[Hg,F]], which enters this equation as an effective
Hermitian form and the utility of Eq(2.11) must be studied potential. The system-specific propagator by construction is
for each particular system separately. In contrast, its applicaxact for any value of the time increment in the uncoupled
tion to Hamiltonian systems is straightforward and does notimit; one then expects that it will be accurate for fairly long
require an additional analytical work to evaluate the propatimes with moderate coupling strengths.
gator[25]. It is our aim here to show that the use of better

zeroth-order systems in EC{Z.;D leads to improved coordi-' . NUMERICAL RESULTS
nate propagators that remain accurate for very large time _ _ _ _
steps. Path integral calculations with the improved system-

Of course, when treating truly multidimensional systems Specific propagators suggested in Sec. Il will be presented
this approach is feasible if and only if the evaluation of the€lsewhere. In this section we give two examples illustrating
propagators(x|e“h|x°> with h=H¢,AH.,C does not the advantages of E@2.13 when using it asa single-step
present a major problem. The latter is generally the case fdPropagator We consider a simple model of intramolecular
the standard splitting of the Hamiltonian operat@.4), nonlinear dynamics as well as a system-bath problem. Both

which immediately yields a fourth-order free-particle repre-€xamples involve only two degrees of freedom so that exact
sentation results can be generated with the standard split operator fast

Fourier transform method5] in a reasonable amount of
PIP(x,tX0) =[ (27t)"det D]*lf dx! exp{—(2tD;) ! time. Our comparison also includes results from the second-
and fourth-order free-particle propagatdfsgs. (2.6) and
X[ (X —x1) 2+ (xt—x0)2] (2.1D]. We have investigated the accuracy of the above-
mentioned approximations through the calculation of diago-
—H[V(X)+4V(xH) +V(x°)] nal and off-diagonal matrix elements of the time evolution
1.3 12 operator xy|e~*H|xqy,). Calculations were performed in di-
7UDilaV) 1T (2.1 mensionless units witm=1 andf =1 over a wide range of
Use of Eq.(2.11) in a path integral will require two Monte COUPIiNg potentials.
Carlo samplings of Gaussian variables rather than one, as is )
the case for E((2.6). However, the resulting error is of order A. Modified Henon-Heiles potential
4. T
1/N"; consequently, the present factorization allows much 14 pegin with, we consider the statistical mechanics in a
larger time steps to be taken than the Trotter breakup fof,q_dimensional potential with strongly anharmonic mode

comparable accurady5]. coupling. Following Meyeet al.[6], our model is described

An important situation, often met in real physical pro- ,, 3 modified (bound Hénon-Heiles Hamiltonian of the
cesses involves problems where the Hamiltonian can be splg,,

into one describing separable motion
L 2 H=—3(dht dgy) + 3(X*+y?)
H,=—35D;id5+Vi(x) =2, H; 2.1
5= ~2Dadi+Vilx) =T 212 FAX(Y2—1x2) + EN2(x2+y?)2 (3.
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The Heon-Heiles Hamiltoniaf26] is a chaotic model that g S — N
(classically describes a resonating system and provides a _ \
simple example for the study of Poincasarfaces and tra- &
jectories. It has been used as a model for many classical or 3 r ]
quantum studies of nonlinear dynamig&7]. The Heanon- %
Heiles Hamiltonian is also important in numerical analysis. It 227 AN
has frequently been exploited to test the utility of different
numerical schemel8—6] and should present a challenge to -3 -
our method. @ 0 . 10
According to the scheme outlined in Sec. Il, we split the
Hamiltonian(3.1) into a reference pattls and a correction 1
\F reading ~ 0
& L hmmmmmme i
Ho= = 3(05+ 95, + 3(x*+y?), 32 3 ; ~
AF=AX(y2— 3x%) + ZN2(x%+y?)2. S ]
The reference part is identical to separable motion of two 4
harmonic oscillators; consequently, the respective zeroth- ©) © 1

order propagator is obtained analytically to give

_ FIG. 1. Exact matrix elemeng,, [Eq. (3.4)] for the modified
X0¥ o) = ¥ro(X.tX0) Yoy tlYo), (3.3  Henon-Heiles HamiltoniafEq. (3.1)] divided by the value,, of

_ . —12 this quantity calculated from the single-step propagator according to
Yro(d.t|do) = (27 sinht) the various approximations discussed in Sec. II, as a functiga) of
y F{quo—(q2+qg)005ht time (at A=0.1) and(b) the coupling parametex (at t=10).

(xyle™™"

- , Dashed lines, standard Trotter splitting, £2.6); dot-dashed lines,
2 sinht fourth-order free-particle approximation, E¢.11); solid lines,
system-specific propagator, EQ.13.

g=X,y.
_ _ 142 1,,2
The quantity of interest is the diagonal matrix element H=Hyx—2d)y+2y"+AF(X,y). (3.9
p=(00e"t|00). (3.4) The system is described by a double well Hamiltonian
— 2 2 2
Since the calculations presented involve only two degrees of Hy= =2 gt E(X*=1)%, (3.6

freedom, the integrals in Eq$2.11) and (2.13 are easily

evaluated by quadrature whereE is the height of the potential barrier. The form of the

Figure Xa) shows the time evolution, fax=0.1, of the coupling potential is chosen to be nonlinear in both coordi-

exact diagonal matrix elemefEg. (3.4)] divided by the nates15]

value of this quantity as obtained from the single-step propa- F(x,y)=—xy exd — (x>+y?)/2a], (3.7
gators discussed in Sec. Il. As expected, the standard Trotter

splitting [Eq. (2.6)] is least accurate. The error made by thiswith « being the width of the coupling. The above model,
propagator increases with very rapidly and fort=10 it  though simple, is of enormous utility in understanding and
overestimates the matrix element by three orders of magnievaluating the influence of a medium on dynamical pro-
tude. Although no system-specific reference system is usegksses. It is commonly used in describing varied physical
in the fourth-order free-particle approximatipiq. (2.11],  phenomena such as vibrational energy transfer and chemical
the effect of taking into account the commutatorToandV reactions in the condensed ph&se2,13—15.

is the reduction of the error by two orders of magnitude. The Following the approach described in Sec. Il, we take the

present system-specific propagdtéq. (2.13] is seen to fur-  reference Hamiltonian to be the entire separable part of the
ther reduce the error roughly by a factor of 8. In Fi¢p)lwe  fyll Hamiltonian

also show the same ratio takentat10 as a function of the

coupling constank. As evidenced by the figure, the error Hs=Hy—3d5,+ 3y (3.9
made by the system-specific propagator increases quite

slowly with increasing coupling. The excellent agreementThen the reference propagator reduces to a product of one-
demonstrates the potential of the proposed method. It is seghmensional propagators

to be able to describe correctly the dynamics of a very an- CtH

harmonic process over a broad range .of (xyle"s[xoyo) = ¥ (X,t|X0) Pro(¥:tlYo), (3.9

where Jr0(Y,t|yo) is given by Eq.(3.3), while ,(X,t|Xg)
=(x|e"™Hx|x,) is computed with minimal numerical effort in

As a second more sophisticated example, we consider terms of the eigenstates of the corresponding system Hamil-
relaxation dynamics of a one-dimensional system that igonian. We see=5 and calculate the off-diagonal matrix
coupled nonlinearly to a single harmonic oscillator element

B. System-bath Hamiltonian



PRE 58 ACCURATE QUANTUM AND STATISTICAL MECHANICS . .. 2863

O¢--¢ 9 ¢ ¢ g o a & & 0 U E
N
N
—~ N — \ T\
=3 ° & YN
S a . < Vo
x > v A3
) o \ \
a i} . a4\ .
= a B Y \
& & L
k=) Qo \ \
A Y \
\‘ \
-2 -2 A Y
0 20 0 10

FIG. 3. Same as in Fig.(d), but for the off-diagonal matrix
element[Eq. (3.10] of the system-bath Hamiltonian, Eq&.5—
(3.7) with A=0.1 anda=5.

IV. CONCLUDING REMARKS

0 In this paper we have presented a method for accurately
solving multidimensional Schdinger and Fokker-Planck
equations in a simple economic way. It is based on splitting

FIG. 2. Exact matrix elemen., [Eq. (3.10] for the system- the full Hamiltonian into a separable part and a pote_ntial
bath HamiltoniarfEqs.(3.5—(3.7)] divided by the valug,, of this term that mixes the _degrees of fr_eedom a”‘?' employlng a
quantity calculated from the approximate system-specific propagd@urth-order symmetric decomposition of the time evolution
tor [Eq. (2.13], as a function of(a) time and (b) the coupling OPerator designed for solving many-body problems of clas-
parametern (at t=10). Open circlesx=0.1 and@=1; solid  Sical mechanics. We have shown that the application of this
circles, \=0.1 anda=5; open trianglesh\=1 anda=1; solid  improved operator expansion to quantum and statistical dy-
triangles,A\=1 and a=5; dot-dashed linep=1; solid line, « namics is straightforward and does not require a more ana-
=5. lytical work to evaluate the propagator than the standard
Trotter splitting. Two typical examples, which cover a vari-
ety of situations, are used to demonstrate the usefulness and
to test the accuracy of the proposed approach. These model
systems are chosen to be two dimensional in order to allow a
comparison with a conventional grid method without ex-
wherex_.y. are the coordinates of the two potential minima. traordinary computational effort. Because the present opera-
This quantity is closely related to the tunneling rE28] and  tor expansion results in a set of one-dimensional problems,
is therefore very sensitive to the coupling term in the Hamil-its application to multidimensional systems is not numeri-
tonian. cally significantly more difficult than in two dimensions and

In order to understand how dependent the accuracy of thstill much less arduous than a general multidimensional cal-
present approach is on the width and the strength of theulation. The results obtained are encouraging since the dy-
coupling, we performed the calculations for different valuesnamics of very anharmonic processes can be quite accurately
of @ and\. The results are presented in Fig. 2. It is cleardescribed for fairly long times with moderate coupling
from this figure that the range of applicability is quite robuststrengths. The scheme is applicable to the entire time incre-
to variations in the width and the strength of the couplingment if the desired propagation time is not too long or the
potential. One would expect the accuracy of Ef13 to fall  coupling is not strong. Otherwise, path integral methodology
off very quickly ase or A went up, but in fact going from a can be employed to correct our representation and systemati-
potential of (@,\)=(1,0.1) to one about5,1), there was cally extend it to the whole parameter space. Being used in a
almost no decay in the accuracy of the results over a broagath integral, the system-specific propagator will allow time
range oft. Even at the largest values afand\ the system- steps larger, by two orders of magnitude, than the standard
specific propagator is seen to yield fairly accurate results fofrrotter splitting for comparable accuracy.
t=<10. Finally, we would like to emphasize that we have not

Finally, we compare in Fig. 3 the exact off-diagonal ma- explicitly covered all possible cases to which our approach
trix element with its approximation calculated in terms of thecould be applied. Besides Hamiltonian systems, it can also
various single-step propagators discussed in Sec. Il. As arbe applied to Fokker-Planck equations, which do not obey
ticipated, the best agreement is achieved with the presemnletailed balance and therefore are not reducible to a Hermit-
approach. The accuracy of the system-specific propagator d&n form. The latter are often used in studies of many inter-
teriorates witht very slowly and fort=10 it overestimates esting problems such as molecular dissociation in strongly
the off-diagonal matrix element by 9%. In contrast, the errorcoupled chemical processes, selective pumps for biological
made by the propagators with the free-particle reference sysnacromolecules, and transport in complex systems as it oc-
tem increasesxponentiallywith t and very soon grows out curs in glasses. The evaluation of rate constants in these
of the scale of the figure. In this case an accuracy of 10% isomplex opened systems is a daunting problem because even
attainable with the standard Trotter splitting only for the stationary probability of the underlying multidimensional
=<0.1. Fokker-Planck equation is no longer given by the Boltzmann

p=(x;yle”™|x_y_), (3.10
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