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Accurate quantum and statistical mechanics from system-specific operator expansions

Alexander N. Drozdov* ,† and J. Javier Brey
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

~Received 29 April 1998!

An effective and flexible numerical scheme is proposed to calculate the quantum and statistical mechanics of
multidimensional systems in a simple economic way. The basic idea is to split the Hamiltonian operator into
a reference separable part, whose solution can be obtained by a combination of analytic and numerical tech-
niques, and a term containing nonseparable interactions and then to employ a symmetric decomposition of the
time evolution operator, which is exact up to a high order in the time step. The method is applicable to a wide
range of coupling potentials and requires numerical effort that scales only linearly with the number of degrees
of freedom involved. To verify the utility of the present approach, two model systems with strongly anhar-
monic mode coupling are considered. The applications show that the method accurately describes the dynamics
for fairly long times with moderate coupling strengths and is still much less arduous than a general numerically
exact calculation.@S1063-651X~98!03509-0#
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o
od
hr
r

ric

g
on
de

gi
d

ie

y
e
s

tu
ge
ec

ra
ho
h
o
io
he
a

s
ent
or-

la-
m

re-
se
rap-

de

bi-
ar-

he
ob-
la
rac-
the

es
In

ex-
inte-

the
m-
ith

ed

pli-

re-
but

not

/1

st
a
ss
I. INTRODUCTION

The calculation of quantum and statistical properties
multidimensional systems is one of the central goals of m
ern theoretical physics. Since exact solutions to the Sc¨-
dinger and Fokker-Planck equations are available only fo
few simple cases, various analytical methods and nume
schemes have been explored to solve these equations
proximately. Both approaches have their own advanta
and limitations. Analytical solutions are essential to the c
ceptual understanding of the behavior of a system, provi
the specific assumptions on which they rely are satisfied@1#.
Numerical methods are also indispensable since they
detailed solutions. Their utility, however, is strongly limite
by the storage requirements and execution time. Effic
schemes for basis set calculations@2–4# and iterative time-
propagation methods@5–8# have proved to be extremel
valuable for systems with one or two coordinates, but th
are not practical for systems with more than three degree
freedom. The use of a short time propagator@9,10# in con-
junction with Monte Carlo integration@11,12# is, at least in
principle, the optimal approach. The most appealing fea
of this approach is perhaps that it avoids storing lar
dimensional Hamiltonian matrices and wave function v
tors. Instead, all dynamical~and/or finite temperature! char-
acteristics are included in a discrete path integ
representation of the propagator. In this way, the met
allows treating truly multidimensional systems, though t
practical applicability of numerical methods for evaluation
the discrete path integral depends critically on its dimens
The latter in turn is determined by the dimensionality of t
system, as well as the accuracy of the short time propag
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used. The higher the accuracy, the smaller the numberN of
time steps~and therefore Monte Carlo integration variable!
required to get convergent results for a given time increm
t. Unfortunately, most conventional propagators remain c
rect only for short time stepst5t/N!1. This limits consid-
erably the time scale of many-body path integral calcu
tions, reducing it to two or so periods of motion of quantu
particles in dissipative environments@13#. Another related
limitation is the necessity of doing the computations p
cisely, even if high precision is unwanted. This is becau
the error made by using standard short time propagators
idly grows with increasingt, and beyond sometmax, which
is usually smaller than unity, the propagators fail to provi
correct results@10#.

An important exception involves problems where an ar
trary one-dimensional system is linearly coupled to a h
monic bath. Makri and co-workers@13,14# suggested a
method to deal very efficiently with such situations. T
starting point is an improved quasiadiabatic propagator
tained numerically in terms of the Trotter product formu
and a basis set method. The approach is particularly att
tive for two reasons. First, in many practical applications
quasiadiabatic propagator turns out to be correct for tim
sufficiently long to observe interesting physical effects.
such cases it can be used for theentire time incrementt.
Second, the harmonic bath appears in the path integral
pression as a Gaussian integral and therefore can be
grated outanalytically, giving rise to a nonlocal influence
functional and reducing the problem to a path integral for
system coordinate only. In this way the dynamics of syste
bath Hamiltonians can be calculated very accurately w
any number of degrees of freedom for anarbitrarily long
time incrementt. More recently the approach was extend
to a system couplednonlinearly to a bath of~harmonic or
anharmonic! noninteracting degrees of freedom@15#. How-
ever, the generalization has appeared to be rather com
cated for practical applications.

In this paper we propose an alternative method that p
serves the advantages of the aforementioned approach
also easily deals with anharmonic Hamiltonians that can
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be expressed in system-bath form. In Sec. II we show how
construct an improved propagator. The basic idea is to s
the Hamiltonian operator into one of separable motion an
potential term that mixes the degrees of freedom and the
employ a symmetric decomposition of the evolution ope
tor, which is exact up to a high order in the time step. In S
III some calculations that illustrate the idea are presen
The calculations clearly demonstrate that the method lead
a reasonable description of the dynamics already forN51.
Finally, in Sec. IV we give our conclusions and indica
directions of future research.

II. CONSTRUCTION OF IMPROVED PROPAGATORS

In the study of dynamical and statistical properties
quantum systems much information can be found from
investigation of the propagator̂ xue2«Hux0&, where x
5(x1 , . . . ,xn) and H stands for a time-independent Cart
sian Hamiltonian operator of the generic form~the summa-
tion rule over repeated indices is always implied!

H52 1
2 Dii ] i i

2 1V~x!. ~2.1!

In the above,Di j is a diagonal matrix withDii 5\2/mi .
Moreover, the parameter« entering the evolution operato
e2«H is either imaginary («5 i t /\) or positive («5b) de-
pending on whether quantum mechanics or statistics is c
cerned. Due to the formal similarities of the Schro¨dinger
equation and the Fokker-Planck equation, we are also c
sidering the stochastic dynamics^xuetLux0& governed by

L5 1
2 ] iDii $] i1@] iU~x!#%. ~2.2!

This is because the Fokker-Planck operator~2.2! can always
be cast into the Hermitian form~2.1!, with the potentialV(x)
given by

V~x!5 1
8 Dii $@] iU~x!#222] i i

2U~x!%. ~2.3!

In our subsequent considerations we set, without loss of g
erality, «5t. Then the matrix element of the quantum tim
evolution operator̂ xue2 i tH /\ux0&, as well as that of the
Boltzmann operatore2bH, can be obtained from the prese
treatment by the substitutionst→ i t /\ and t→b, respec-
tively.

The most common procedure of approximating the pro
gator is based on the partitioning of the Hamiltonian opera
into kinetic and potential energy terms

H5T1V,
~2.4!T52 1

2 Dii ] i i
2 , V5V~x!

and employs the Trotter breakup to split the time evolut
operator into a product of exactly solvable parts

e2t~T1V!5e2tV/2e2tTe2tV/21O~ t3!. ~2.5!

This leads to a second-order free-particle coordinate re
sentation for the propagator of the form

c2
f p~x,tux0!5@~2pt !ndet D#21/2exp$2~2tDii !

21~xi2xi
0!2

2 1
2 t@V~x!1V~x0!#%. ~2.6!
to
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The main disadvantage of the above breakup is that it
glects the commutator ofT and V, being exact only in the
limit of free-particle motionV(x)5const. This neglect is of-
ten quite severe and introduces a large error that has t
compensated for by a very small time incrementt. We will
refer to Eqs.~2.5! and~2.6! as the standard Trotter splitting

Two general approaches to refine the Trotter splitting
possible. First, one can employ an improved zeroth-or
representation of the propagator that is accurate for a par
lar problem, but much better behaved than the standard f
particle basise2tT. It may be noted here that the idea
using a good representation as the zeroth-order descriptio
a problem is not new. It is widely used in perturbation theo
@1# and grid and basis set calculations@2,4,7# when the full
Hamiltonian can be split into a reference~system! part Hs ,
whose exact solution is easily obtainable by standard te
niques, and a correctionlHc reading

H5Hs1lHc , ~2.7!

where l is a smallness parameter. When inserted into
Trotter product formula, the splitting~2.7! yields a second-
order system-specific propagator

e2t~Hs1lHc!5e2ltHc/2e2tHse2ltHc/21O~lt3!, ~2.8!

which in the coordinate representation has the form

c2
ss~x,tux0!5E dx2dx1^xue2ltHc/2ux2&

3^x2ue2tHsux1&^x1ue2ltHc/2ux0&. ~2.9!

It is clear that Eq.~2.9! is more difficult to implement than
the standard Trotter splitting. The best zeroth-order propa
tors cannot be expressed in closed form in general and m
therefore be computednumericallyand stored on grids. By
construction, however, they incorporate the exact dynam
of physically motivated reference systems. Therefore,
may expect that in a certain favorable regime of parame
space (l&1 in the above example! system-specific propaga
tors would allow much larger time increments than Eq.~2.6!.
Recently, Makri and co-workers@13–15# have implemented
this idea to system-bath Hamiltonians with impressive s
cess~see also Refs.@10,16#!.

Yet another way to obtain betteranalytical approxima-
tions for the propagator consists in using higher-order exp
sions for the time evolution operator. We mention spec
cally high-accuracy Trotter-like factorizations@17#, power
series representations@18,19#, extrapolation methods for re
moving time slice errors@20,21#, and cumulant expansion
@22#. An extensive study of their relative efficacy can b
found in a previous paper@10#. Here we only note that ap
proximate propagators obtained with these methods tho
more accurate than the standard Trotter splitting are in g
eral correct for short time steps. An exception is the work
Drozdov @19#, who elaborated a theory that combines t
sum acceleration technique, as well as the power series
pansion method by Makri and Miller@18#. The approach
distinguishes itself from other methods in that it gives glob
approximations valid not only for short times, but also in t
intermediate and long time domains. However, the effici
evaluation of the power series representation of the propa
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tor is feasible only when the potentialV(x) is simple enough
so that the various integrals involved in the expansion co
ficients can be evaluated analytically. Otherwise, numer
quadratures are required, making this approach unsu
even for one-dimensional problems.

Instead, we propose an alternative numerical method
combines the spirit of the two kinds of aforementioned a
proaches so that the resulting propagator includes the c
mutator ofT and V explicitly but is easy to implement re
gardless of whether or not the Hamiltonian is of the syste
bath form. The basic idea is to employ an improved zero
order representation along with a fourth-order symme
decomposition of the time evolution operator designed
solving many-body problems of classical mechanics@23#.
When applied to Eq.~2.7!, the decomposition reads

et~Hs1lHc!5eltHc/6etHs/2etCetHs/2eltHc/61O~l2t5!,
~2.10!

C5 2
3 lHc1 1

72 l2t2
†Hc ,@Hs ,Hc#‡,

whereHs andHc are two arbitrary noncommuting operato
assumed to be bounded on a finite-dimensional Hilb
space. It may be noted that factorizations of this kind ha
already been used by the authors to construct high-accu
path integral representations for Fokker-Planck proces
with singular diffusion matrices@24#. In such a case, the
Fokker-Planck operator cannot in principle be cast into
Hermitian form and the utility of Eq.~2.11! must be studied
for each particular system separately. In contrast, its app
tion to Hamiltonian systems is straightforward and does
require an additional analytical work to evaluate the pro
gator @25#. It is our aim here to show that the use of bet
zeroth-order systems in Eq.~2.11! leads to improved coordi
nate propagators that remain accurate for very large t
steps.

Of course, when treating truly multidimensional system
this approach is feasible if and only if the evaluation of t
propagators ^xue2thux0& with h5Hs ,lHc ,C does not
present a major problem. The latter is generally the case
the standard splitting of the Hamiltonian operator~2.4!,
which immediately yields a fourth-order free-particle rep
sentation

c4
f p~x,tux0!5@~2pt !ndet D#21E dx1 exp$2~2tDii !

21

3@~xi2xi
1!21~xi

12xi
0!2#

2 1
6 t@V~x!14V~x1!1V~x0!#

2 1
72 t3Dii @] iV~x1!#2%. ~2.11!

Use of Eq.~2.11! in a path integral will require two Monte
Carlo samplings of Gaussian variables rather than one, a
the case for Eq.~2.6!. However, the resulting error is of orde
1/N4; consequently, the present factorization allows mu
larger time steps to be taken than the Trotter breakup
comparable accuracy@25#.

An important situation, often met in real physical pr
cesses involves problems where the Hamiltonian can be
into one describing separable motion

Hs52 1
2 Dii ] i i

2 1Vi~xi !5(
i 51

n

Hi ~2.12!
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and a potential termlHc5lF(x), which mixes the degree
of freedom. Herel is the coupling constant. This splittin
leads to an improved fourth-order approximation of the fo

c4
ss~x,tux0!5E dx1^xue2tHs/2ux1&^x1ue2tHs/2ux0&

3exp$2 1
6 lt@F~x!14F~x1!1F~x0!#

2 1
72 l2t3Dii @] iF~x1!#2%, ~2.13!

where the zeroth-order propagator^xue2tHsuy& is in principle
to be evaluated numerically. This is computationally feasi
because the reference HamiltonianHs is assumed to be sepa
rable

^xue2tHsuy&5)
i 51

n

^xi ue2tHiuyi& ~2.14!

and therefore standard one-dimensional grid or basis
methods can be used to calculate each factor on the ri
hand side of Eq.~2.14!. Unlike the Trotter-approximated
propagator given by Eq.~2.8!, which is correct up toO(lt3),
the above approximation is valid up toO(l2t5). The cou-
pling is present in Eq.~2.13! not only through the coupling
potential lF but also through the commutato
l2

†F,@Hs ,F#‡, which enters this equation as an effecti
potential. The system-specific propagator by constructio
exact for any value of the time increment in the uncoup
limit; one then expects that it will be accurate for fairly lon
times with moderate coupling strengths.

III. NUMERICAL RESULTS

Path integral calculations with the improved syste
specific propagators suggested in Sec. II will be presen
elsewhere. In this section we give two examples illustrat
the advantages of Eq.~2.13! when using it asa single-step
propagator. We consider a simple model of intramolecul
nonlinear dynamics as well as a system-bath problem. B
examples involve only two degrees of freedom so that ex
results can be generated with the standard split operator
Fourier transform method@5# in a reasonable amount o
time. Our comparison also includes results from the seco
and fourth-order free-particle propagators@Eqs. ~2.6! and
~2.11!#. We have investigated the accuracy of the abo
mentioned approximations through the calculation of dia
nal and off-diagonal matrix elements of the time evoluti
operator̂ xyue2tHux0y0&. Calculations were performed in di
mensionless units withm51 and\51 over a wide range of
coupling potentials.

A. Modified Hénon-Heiles potential

To begin with, we consider the statistical mechanics in
two-dimensional potential with strongly anharmonic mo
coupling. Following Meyeret al. @6#, our model is described
by a modified ~bound! Hénon-Heiles Hamiltonian of the
form

H52 1
2 ~]xx

2 1]yy
2 !1 1

2 ~x21y2!

1lx~y22 1
3 x2!1 1

16 l2~x21y2!2. ~3.1!
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The Hénon-Heiles Hamiltonian@26# is a chaotic model tha
~classically! describes a resonating system and provide
simple example for the study of Poincare´ surfaces and tra
jectories. It has been used as a model for many classica
quantum studies of nonlinear dynamics@27#. The Hénon-
Heiles Hamiltonian is also important in numerical analysis
has frequently been exploited to test the utility of differe
numerical schemes@3–6# and should present a challenge
our method.

According to the scheme outlined in Sec. II, we split t
Hamiltonian~3.1! into a reference partHs and a correction
lF reading

Hs52 1
2 ~]xx

2 1]yy
2 !1 1

2 ~x21y2!,
~3.2!

lF5lx~y22 1
3 x2!1 1

16 l2~x21y2!2.

The reference part is identical to separable motion of t
harmonic oscillators; consequently, the respective zer
order propagator is obtained analytically to give

^xyue2tHsux0y0&5cHO~x,tux0!cHO~y,tuy0!,
~3.3!

cHO~q,tuq0!5~2p sinh t !21/2

3expF2qq02~q21q0
2!cosht

2 sinh t G ,
q5x,y.

The quantity of interest is the diagonal matrix element

r5^00ue2tHu00&. ~3.4!

Since the calculations presented involve only two degree
freedom, the integrals in Eqs.~2.11! and ~2.13! are easily
evaluated by quadrature.

Figure 1~a! shows the time evolution, forl50.1, of the
exact diagonal matrix element@Eq. ~3.4!# divided by the
value of this quantity as obtained from the single-step pro
gators discussed in Sec. II. As expected, the standard Tr
splitting @Eq. ~2.6!# is least accurate. The error made by th
propagator increases witht very rapidly and fort510 it
overestimates the matrix element by three orders of ma
tude. Although no system-specific reference system is u
in the fourth-order free-particle approximation@Eq. ~2.11!#,
the effect of taking into account the commutator ofT andV
is the reduction of the error by two orders of magnitude. T
present system-specific propagator@Eq. ~2.13!# is seen to fur-
ther reduce the error roughly by a factor of 8. In Fig. 1~b! we
also show the same ratio taken att510 as a function of the
coupling constantl. As evidenced by the figure, the erro
made by the system-specific propagator increases q
slowly with increasing coupling. The excellent agreeme
demonstrates the potential of the proposed method. It is s
to be able to describe correctly the dynamics of a very
harmonic process over a broad range oft.

B. System-bath Hamiltonian

As a second more sophisticated example, we conside
relaxation dynamics of a one-dimensional system tha
coupled nonlinearly to a single harmonic oscillator
a

or
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H5Hx2 1
2 ]yy

2 1 1
2 y21lF~x,y!. ~3.5!

The system is described by a double well Hamiltonian

Hx52 1
2 ]xx

2 1E~x221!2, ~3.6!

whereE is the height of the potential barrier. The form of th
coupling potential is chosen to be nonlinear in both coor
nates@15#

F~x,y!52xy exp@2~x21y2!/2a#, ~3.7!

with a being the width of the coupling. The above mod
though simple, is of enormous utility in understanding a
evaluating the influence of a medium on dynamical p
cesses. It is commonly used in describing varied phys
phenomena such as vibrational energy transfer and chem
reactions in the condensed phase@1,2,13–15#.

Following the approach described in Sec. II, we take
reference Hamiltonian to be the entire separable part of
full Hamiltonian

Hs5Hx2 1
2 ]yy

2 1 1
2 y2. ~3.8!

Then the reference propagator reduces to a product of
dimensional propagators

^xyue2tHsux0y0&5cx~x,tux0!cHO~y,tuy0!, ~3.9!

wherecHO(y,tuy0) is given by Eq.~3.3!, while cx(x,tux0)
5^xue2tHxux0& is computed with minimal numerical effort in
terms of the eigenstates of the corresponding system Ha
tonian. We setE55 and calculate the off-diagonal matri
element

FIG. 1. Exact matrix elementrex @Eq. ~3.4!# for the modified
Hénon-Heiles Hamiltonian@Eq. ~3.1!# divided by the valuerap of
this quantity calculated from the single-step propagator accordin
the various approximations discussed in Sec. II, as a function o~a!
time ~at l50.1) and ~b! the coupling parameterl ~at t510).
Dashed lines, standard Trotter splitting, Eq.~2.6!; dot-dashed lines,
fourth-order free-particle approximation, Eq.~2.11!; solid lines,
system-specific propagator, Eq.~2.13!.
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r5^x1y1ue2tHux2y2&, ~3.10!

wherex6y6 are the coordinates of the two potential minim
This quantity is closely related to the tunneling rate@28# and
is therefore very sensitive to the coupling term in the Ham
tonian.

In order to understand how dependent the accuracy of
present approach is on the width and the strength of
coupling, we performed the calculations for different valu
of a and l. The results are presented in Fig. 2. It is cle
from this figure that the range of applicability is quite robu
to variations in the width and the strength of the coupli
potential. One would expect the accuracy of Eq.~2.13! to fall
off very quickly asa or l went up, but in fact going from a
potential of (a,l)5(1,0.1) to one about~5,1!, there was
almost no decay in the accuracy of the results over a br
range oft. Even at the largest values ofa andl the system-
specific propagator is seen to yield fairly accurate results
t&10.

Finally, we compare in Fig. 3 the exact off-diagonal m
trix element with its approximation calculated in terms of t
various single-step propagators discussed in Sec. II. As
ticipated, the best agreement is achieved with the pre
approach. The accuracy of the system-specific propagato
teriorates witht very slowly and fort510 it overestimates
the off-diagonal matrix element by 9%. In contrast, the er
made by the propagators with the free-particle reference
tem increasesexponentiallywith t and very soon grows ou
of the scale of the figure. In this case an accuracy of 10%
attainable with the standard Trotter splitting only fort
&0.1.

FIG. 2. Exact matrix elementrex @Eq. ~3.10!# for the system-
bath Hamiltonian@Eqs.~3.5!–~3.7!# divided by the valuerap of this
quantity calculated from the approximate system-specific propa
tor @Eq. ~2.13!#, as a function of~a! time and ~b! the coupling
parameterl ~at t510). Open circles,l50.1 and a51; solid
circles, l50.1 anda55; open triangles,l51 and a51; solid
triangles, l51 and a55; dot-dashed line,a51; solid line, a
55.
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IV. CONCLUDING REMARKS

In this paper we have presented a method for accura
solving multidimensional Schro¨dinger and Fokker-Planck
equations in a simple economic way. It is based on splitt
the full Hamiltonian into a separable part and a poten
term that mixes the degrees of freedom and employin
fourth-order symmetric decomposition of the time evoluti
operator designed for solving many-body problems of cl
sical mechanics. We have shown that the application of
improved operator expansion to quantum and statistical
namics is straightforward and does not require a more a
lytical work to evaluate the propagator than the stand
Trotter splitting. Two typical examples, which cover a va
ety of situations, are used to demonstrate the usefulness
to test the accuracy of the proposed approach. These m
systems are chosen to be two dimensional in order to allo
comparison with a conventional grid method without e
traordinary computational effort. Because the present op
tor expansion results in a set of one-dimensional proble
its application to multidimensional systems is not nume
cally significantly more difficult than in two dimensions an
still much less arduous than a general multidimensional
culation. The results obtained are encouraging since the
namics of very anharmonic processes can be quite accur
described for fairly long times with moderate couplin
strengths. The scheme is applicable to the entire time in
ment if the desired propagation time is not too long or t
coupling is not strong. Otherwise, path integral methodolo
can be employed to correct our representation and system
cally extend it to the whole parameter space. Being used
path integral, the system-specific propagator will allow tim
steps larger, by two orders of magnitude, than the stand
Trotter splitting for comparable accuracy.

Finally, we would like to emphasize that we have n
explicitly covered all possible cases to which our approa
could be applied. Besides Hamiltonian systems, it can a
be applied to Fokker-Planck equations, which do not ob
detailed balance and therefore are not reducible to a Her
ian form. The latter are often used in studies of many int
esting problems such as molecular dissociation in stron
coupled chemical processes, selective pumps for biolog
macromolecules, and transport in complex systems as it
curs in glasses. The evaluation of rate constants in th
complex opened systems is a daunting problem because
the stationary probability of the underlying multidimension
Fokker-Planck equation is no longer given by the Boltzma

a-

FIG. 3. Same as in Fig. 1~a!, but for the off-diagonal matrix
element@Eq. ~3.10!# of the system-bath Hamiltonian, Eqs.~3.5!–
~3.7! with l50.1 anda55.
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distribution; it must be determined instead self-consisten
from the fluctuating properties@29#. We plan to use our
methodology to gain insight into a number of questions
lated to this problem.
,
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